International Research & Training Program in Environmental and Occupational Health


Our Fogarty training program in India has focused on the development of skills and capacity building for research and interventions concerning the environmental health consequences resulting from widespread arsenic contamination of drinking water, especially in West Bengal, and the serious effects of indoor air pollution from use of traditional fuels in rural households throughout the country.


The arsenic in water problem is even more widespread than it seemed five years ago and the health risks more devastating. As well as West Bengal, where there are more than six million people drinking arsenic contaminated water, the problem is now known to extend into the neighboring states of Bihar, Uttar Pradesh, and Assam, and into the lowlands of Nepal. The health risks were already known to be very high, and our work with trainees in India has identified additional effects including high rates of stillbirth, and marked increases in chronic respiratory disease including bronchiectasis.  We plan to continue training in arsenic research with traditional and molecular epidemiology research studies, including investigations to assess the health impact of early life exposure to arsenic.  Reduction of population exposure has been extremely slow, in part because arsenic in water is invisible, tasteless and odorless. We will continue to work with trainees to improve the design of shallow dugwells as a rapid mitigation method to reduce exposure while government sponsored long term solutions are gradually implemented. 


The large population exposed to indoor air pollution in India has been clear for some years, but understanding of health effects has been rapidly evolving. Recent findings include adverse birth outcomes, cataracts, lung cancer, and tuberculosis, and possible effects on blood pressure and cardiovascular disease, in addition to the already known effects of chronic obstructive pulmonary disease  in women and acute lower respiratory infections in children.  Like arsenic in water, however, viable and cost-effective interventions are still elusive, largely due to social, economic, and perceptual constraints.  Clean fuels are too expensive and simple chimney stoves turn out not to lower exposures to levels thought to be sufficiently protective for large-scale application.  As with arsenic, it is our intention to conduct training in both traditional and modern methods of exposure and outcome assessment as well as to further explore the efficacy of such interventions as stoves with highly improved combustion of biomass so that less pollution is actually generated.





University of California

2470 Telegraph Avenue, Suite 301, Berkeley, CA  94704  Tel: (510) 990-8354     Email: